
 From Hello World to Team Lead

1

 From Hello World to Team Lead

FROM
HELLO
WORLD TO
TEAM LEAD
A PRACTICAL GUIDE FOR
DEVELOPERS READY TO LEVEL UP.

BY TIM LORENT

2

 From Hello World to Team Lead

From Hello World to Team Lead
All rights reserved.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means
— electronic, mechanical, photocopying, recording, or
otherwise — without the prior written permission of the
author, except in the case of brief quotations embodied in
critical articles or reviews.

This book is for informational purposes only. The author
makes no representations or warranties with respect to the
accuracy or completeness of the contents and specifically
disclaims any implied warranties of fitness for a particular
purpose.

For permissions, inquiries, or support, please contact:
support@fromhelloworldtoteamlead.com

© 2025 Tim Lorent

Amsterdam, The Netherlands
www.fromhelloworldtoteamlead.com

3

mailto:support@fromhelloworldtoteamlead.com
http://www.fromhelloworldtoteamlead.com

 From Hello World to Team Lead

Prologue (nerd from the start) 6

4. Templates & Processes I Use Every
Day 9

Want My Full Workflow? 39

About the author 40

4

 From Hello World to Team Lead

To all the ambitious developers out there. This one’s for you.

5

 From Hello World to Team Lead

PROLOGUE (NERD
FROM THE
START)

Two big screens, lines and lines of code, a man deeply
focused, paperwork and pencils lying around on the desk.
Sounds like an AI-prompt for an image of a developer, but it’s
actually a description of my father on a daily basis. Code was
always around me from a young age. Walking to the kitchen
to grab snacks while playing videogames, I’d see code
everywhere. Like I was in the Matrix.

Unfortunately, the fascination for the wonderful world of
coding did not exactly rub off on me. As a teenager, I rebelled
against it. Except for the brief moment I tried to convince my
parents to let me drop out of high school to become a
developer (thanks again mom & dad for stopping me).
Although that was mostly the most valid excuse out I could
come up with at the time.

It was for nerds, I told myself. Plus, I honestly believed I was
not smart enough to do it. So instead, I had high hopes of
becoming a music producer and DJ. I gave it a shot:
produced some music, played some gigs. Then I got a 24-
hour ringing in my ear and stopped. So it goes.

6

 From Hello World to Team Lead

Fast forward to university, and code came back into my life.
This time in the form of a constrictor snake: Python. Boy, did I
hate it. I wanted to learn about business and IT, how to
connect the two. Why did I have to go through the pain of
mandatory exercises in Python, being told not to get too
creative? Same story with the web development class: No
HTML5, no CSS3. Only older technologies to “really
understand everything.” It felt a bit pointless at the time. So
when does the part come where everything clicks, I fall in
love with code, and we live happily ever after?

Well, that part came years later when I was bored out of my
mind during my Master’s in Business Informatics. I absolutely
dreaded going to class. But then, out of nowhere, an angel
answered my prayers: Turing Society. A free, non-profit
coding bootcamp I could follow during evenings and
weekends. Eight weeks of frontend web development. I need
a new direction in life because the Master’s was not taking
me anywhere I wanted to go.

So I gave it a shot. I wrote a few JavaScript functions. It
worked. I developed a small website with HTML & CSS. I saw
magic on the screen…and fell in love. Before I knew it, I was
spending all my free time learning how to code and using all
my precious brain power during class to figure out how to
refactor my code and write recursive functions.

That was the end of my academic career and the beginning
of a new one life filled with creativity, puzzles, complex
problem-solving, and honestly, just pure magic. It only
occurred to me then: I was a nerd from the start.

7

 From Hello World to Team Lead

Six years later, I went from a clueless junior to a team lead. I
made mistakes: broke production during lunch, went rogue
and started coding outside of the sprint, coded non-stop until
I burned out, missed learning opportunities, did rm -rf on a
production server…no just kidding (for now).

But in the end, I got there and so can you! If you of course
follow this guide step-by-step and word-for-word to achieve
mega success and make a million dollars! Wait no, that’s not
true.

But what I can give you is everything I learned in my seven
years of being a developer. Things I applied that helped me
grow, improve, and eventually lead developers. I’ve applied
this knowledge in my volunteering work, mentoring
developers from different backgrounds, and sharing
templates and workflows to help them achieve better results.

And I want you to have this knowledge, too.

I want to give back to the developer community and help
junior and medior devs (or even anyone who might benefit
from this information) achieve great things.

Join me on this journey!

8

 From Hello World to Team Lead

4. TEMPLATES
& PROCESSES
I USE EVERY

DAY

What I’ve often heard is that great developers “just know
what to do.” They open a ticket, dive into the code, ship
something brilliant, and move on. No checklists. No structure.
Just vibes and instincts.

But I am not that developer.

Over the years, I’ve learned that having systems doesn’t slow
you down—it sets you free. When you build a personal
workflow, you make fewer mistakes, collaborate better, and
create space to focus on what really matters: solving
problems, learning, and delivering value.

In this chapter, I’ll share the actual templates and processes I
use every day:
• How I review code
• How I prep for refinement

9

 From Hello World to Team Lead

• The checklist I go through before touching a single
line

• My “code commandments” that guide every feature I
build

• And the simple frameworks I use to grow, reflect, and
keep track of my progress

• The “five why’s” for solving bugs

These aren’t theoretical. They’re real tools I’ve used (and
refined) over years of working in product teams, agencies,
freelance gigs and tech interviews. My hope is that they’ll
help you build your own workflow, one that supports your
way of thinking and working.

This is the “how” behind my job. Let’s dive in.

HOW I WORK: MINDSET + STRUCTURE

Remember how I described my dad in the preface? Sitting at
his desk, surrounded by pencils and paper? He wasn’t just a
creative; he was methodical. Every bug, every feature idea,
every design thought—it all got written down before he
touched the keyboard. His colleagues often asked, “Why
write it out when you’ve got a computer?” But that mindset
stuck with me.

When I started my first job as a developer, I did the same. At
first it was pen and paper. Later it became templates and
checklists. And while not everyone works this way—some
devs prefer to dive in and figure it out as they go—this system
has worked wonders for me. It brings clarity. Focus. Intent.

10

 From Hello World to Team Lead

I’ve had colleagues tell me they appreciate how structured
my approach is. No, you can’t predict or plan everything in
tech. But you can get a lot further by starting with the right
questions and a clear map.

That’s how I work: with structure that creates space for
creativity. Systems that support problem-solving instead of
getting in the way. I don’t just write code—I work with
intention, from planning all the way to reflection.

Here’s what that looks like:
• I review my “Code Commandments” before I open VS

Code. Reminders to code for humans, not just for the
machine.

• I use a ticket checklist to make sure I understand the
business logic, edge cases, and design choices before
writing a single line.

• I follow a code review template so my feedback is
consistent, thoughtful, and useful.

• I prep for every refinement session with a structure
that helps me ask better questions and spot unclear
stories early on.

Over the years, I’ve improved each of these tools. I’ve cut
what didn’t work. Doubled down on what did. Now I share
them with mentees, teams, and clients, and in this chapter, I’ll
share them with you.

Let’s take a look under the hood.

11

 From Hello World to Team Lead

CODE COMMANDMENTS

The 8 principles that guide how I build, fix, and think through
code every day. These aren’t hard rules. They’re reminders.
Anchors. Things I return to when I’m stuck, in doubt, or deep
in the flow.

1. Write simple, “dumb” code: Write your code like the next
person who reads it just got hired—and it's their first week.
That person might be you in 6 months. Avoid over-
engineering. Prefer clarity over magic. If a solution is too
clever to explain in a few sentences, it's probably too
clever to maintain.

2. Don’t stay stuck for more than 20 minutes: Frustration ≠
progress. If you're spinning in circles or Googling the same
error for the fifth time: pause. Ask someone. Rubber duck
it. Walk away and come back. You’ll solve problems faster
when you stop forcing it. Once I was stuck on a bug and
went outside to get an ice cream. The second I got handed
the ice cream and started eating, I had a “eureka“ moment!

3. Code should be maintainable and scalable: Not just
“does it work,” but “will it still work next month?” Your
code lives in a system. Can someone extend it without
rewriting everything? Does it follow naming conventions?
Are the files in the right place?

4. Know where you’re going and how to arrive at your
destination. What does the user need? What’s the
outcome? What’s the flow? Take some time to sketch it out.
You’ll save hours of rework. I use a checklist before every
ticket to make sure I’m not building blindly.

5. Overcommunicate: Say more, not less. Leave good
commit messages. Comment when something’s weird.

12

 From Hello World to Team Lead

Post updates in your team chat. Overcommunication builds
trust. No one’s ever said, “Wow, you’re updating us too
clearly.”

6. Know what you know, realise and accept that there is a
lot you also don’t know: Humility = velocity. You don’t
need all the answers. You just need to ask better
questions. Admitting “I don’t know” opens the door to
“Let’s figure it out.” Tech changes fast, but curiosity beats
certainty every time.

7. Use micro-commits: One commit, one clean step
forward. Each commit should tell a story: “refactor header,”
“add unit test”. If something breaks, you can easily step
back. Here’s why micro-commits matter →

8. Ask the five whys: Get to the root cause. Why did this bug
happen? Why didn’t the test catch it? Why was it coded
that way? Keep asking why—at least five times. Learn the
method →

Each of these commandments has saved me more than once
—from unreadable code, wasted time, embarrassing bugs, or
misaligned expectations. You don’t need to follow my
commandments. But create your own. Write them down. Let
them evolve. They’ll keep you grounded when things get
chaotic.

13

https://www.industriallogic.com/blog/whats-this-about-micro-commits
https://en.wikipedia.org/wiki/Five_whys
https://en.wikipedia.org/wiki/Five_whys

 From Hello World to Team Lead

THE REVIEW TEMPLATE

How I approach pull requests with structure, empathy, and
clarity.

I used to feel nervous reviewing someone else’s code. Who
was I to say something should be different? But over time, I
realized that a good code review is never about being “right.”
It’s about making the codebase stronger—together. They’re a
place to learn, to teach, and to build trust in a team.

But only if you do them right. So I built a review system. It
helps me stay consistent, thorough, and constructive, even
on chaotic days.

Let’s break it down.

MY REVIEW CHECKLIST

I use this list (or a version of it) in every pull request I review.
It’s not about ticking every single box, it’s about sharpening
your focus and asking the right questions.

Disclaimer: parts of it are scoped to React, but you can of
course change this to reflect your tech stack.

1. Code Structure

• React rendering: Is the rendering logic efficient? Are
memoization techniques used appropriately or
necessary?

14

 From Hello World to Team Lead

• Hooks: Should certain logic be abstracted into hooks,
and are the existing hooks correctly implemented?
Should a hook be a regular function instead?

• CSS & HTML: Are correct HTML and CSS practices
followed?
◦ Can React or JavaScript logic be replaced by

native CSS instead?
◦ Are any CSS variables skipped?
◦ Are styles properly scoped?
◦ CSS impact: If a style is removed, what default

will the element fall back to?
▪ A span with display: block will

default to display: inline if
removed.

▪ Changing a parent’s display from flex
to block could affect layout of child
elements.

• State management:
◦ Can state be lifted instead of using context

unnecessarily?
◦ Is the function signature change non-breaking?

▪ Adding an optional parameter is fine.
▪ Removing or altering required

parameters might introduce breaking
changes.

• Inversion of control: Does the code follow proper
separation of concerns and avoid tight coupling?

• Effects:
◦ Is the Effect necessary?
◦ Does it describe a single synchronization

process?

15

 From Hello World to Team Lead

◦ Are all reactive values used in the Effect
included in the dependencies array (check with
exhaustive-deps)?

◦ Is the cleanup logic implemented correctly for
scenarios like unmounting or dependency
changes?

◦ Are objects or functions unnecessarily
recreated in the render, causing excessive re-
synchronization?

2. Acceptance Criteria Check

Ticket Description: Read the ticket carefully and create a
checklist based on its acceptance criteria. Review the
implementation against that list.

3. Tests

Coverage: Are all necessary test cases present based on
what the component is expected to do?

• Are loading states tested?
• Are error states tested?
• Is the output for different scenarios verified?

4. UI Validation

Responsiveness: If UI was changed, check the branch and
manually test it across various screen sizes. Is the UI fully
responsive?

16

 From Hello World to Team Lead

5. Accessibility (a11y)

• Accessibility Guidelines: Are the applicable
accessibility rules followed?

• A11y checklist: Has the accessibility checklist for the
project been consulted or completed?

Additional Review Considerations

• Impact of changes: Always consider how far-reaching
a change might be.
◦ When modifying a function or component’s

signature, think carefully about breaking
changes.

◦ When changing styles, consider how fallbacks
might affect layout or accessibility.

• Data handling: Consider the kinds of data this function
or component might receive.
◦ How does the implementation behave with

edge cases?
◦ Are there any assumptions that could break

with unexpected input?

REVIEW PHRASES THAT HELP

Here are a few lines I often use to keep feedback clear,
respectful, and collaborative:

• “Would it make sense to…?”
• “What do you think about this alternative?”
• “I wonder if we could simplify this by…”

17

 From Hello World to Team Lead

• “Totally optional, but I’ve seen this pattern used
effectively here…”

• “Just a preference—feel free to push back!”
• “This is looking good. One thing I’d consider…”

And just as important: I never write vague or dismissive
comments like:

• “This doesn’t look right.”
• “Fix this.”
• “Why is this here?”

Why not? Because it puts someone on the defensive and
doesn’t invite a conversation.

HOW I GIVE FEEDBACK

Here are my three golden rules:

1. Be specific. Don’t just say “this needs work”! Say why, and
offer an example.

2. Be empathetic. Someone spent time on this. Even if
something could be improved, there’s usually something to
appreciate too.

3. Be collaborative. A review isn’t a monologue. I often ask:
“What are your thoughts?” This opens the door for
discussion instead of judgment.

I also always assume good intent. If something looks off, I first
check the context, and I ask—not accuse.

18

 From Hello World to Team Lead

WHY REVIEWS MATTER

A good PR review isn’t just about finding bugs. It’s a chance
to:
• Strengthen team knowledge
• Share patterns and best practices
• Prevent future tech debt
• Help someone feel more confident in their work

When I first started out, I noticed something interesting:
senior developers would often spot things in my code that I
completely missed. Not because I wasn’t paying attention,
but because they had a broader perspective. They would ask
questions about architecture, reusability, long-term impact—
things I hadn’t learned to consider yet.

I thought: I want to review like that.

So I did two things:
1. I asked them directly how they approach a code review.

What they look for, in what order, what questions they ask
themselves.

2. I studied their comments. I went back through their
reviews, one by one, to see how they thought, how they
phrased things, and how they gave feedback.

Then I started applying those techniques to my own reviews.
Little by little, my comments became more strategic, more
helpful—not just for the author, but for the whole team.

19

 From Hello World to Team Lead

Code reviews are one of those places where your technical
skill and your people skills meet. Be clear, be kind, be
curious.

And next time you review a PR, ask yourself: Would I feel
good receiving this comment?

THE TICKET CHECKLIST: START
SMART, FINISH STRONG

You know that feeling when you’re halfway through a ticket
and suddenly think: wait… what exactly am I building again?
Been there. And trust me, it’s not a great place to be. That’s
why I started creating a personal checklist before touching
any code.

For me, the real coding doesn’t begin when I open VS Code.
It starts before that, when I understand the assignment fully,
identify the risks, align with backend and design, and make
sure I’m not just “building stuff,” but solving the right problem.

This section isn’t just about planning. It’s about building
intentionally. Checklists don’t make you rigid. They make you
focused.

They help you:
• Understand the scope
• Catch red flags early
• Ask better questions
• Avoid rework or misunderstandings

20

 From Hello World to Team Lead

It’s also a huge time-saver. Not just for you, but for your team.
When you know what to ask before you start, your work
becomes smoother, faster, and more aligned.

MY TICKET CHECKLIST (SIMPLIFIED
VIEW)

Here’s the core structure I follow before and during any
ticket:

1. Prep

• Read the ticket thoroughly
• Review the project’s guidelines
• Skim my own “Code Commandments”
• Ask: Is the API ready? Do I understand the business

logic? Is the scope clear?

2. Requirements

I write out:
• The goal of the ticket
• The context: why it matters
• Links to designs, docs, or related tickets
• A numbered list of acceptance criteria

3. Questions to ask

• Design: What happens on hover? Are there empty
states? Do we need animations?

21

 From Hello World to Team Lead

• Accessibility: Is this element focusable? Is there
keyboard navigation?

• Technical: Is the data model clear? Do I know what I’m
sending/receiving?

4. Coding

• Micro-commits only
• Document decisions inside PRs
• Sync with backend if something’s unclear

5. Testing

• UI tested on various screen sizes
• Manual checks with dev tools (e.g. throttling, a11y

scanners)
• Unit & integration tests written
• Acceptance criteria validated

6. Delivery

• Review the PR carefully before opening
• Link back to the ticket and include a clear summary
• Delete branch after merge

What it helps with (real examples):
• Once, a ticket looked simple. A new UI component.

But after writing out my checklist, I noticed the design
had no loading state. I flagged it before writing a line
of code. The designer updated the file and thanked
me. That saved us a full feedback round.

• Another time, I almost started coding with the wrong
API endpoint. My checklist forced me to double-check

22

 From Hello World to Team Lead

with backend. And guess what, the endpoint wasn’t
stable yet.

These aren’t big hero moments. But they’re the quiet
decisions that make or break a clean delivery.

ASK BEFORE YOU CODE: THE MINDSET

It can be tempting to jump straight into solving. I get it,
building is fun! But I’ve learned that slowing down at the start
actually helps me speed up later.

That’s what this checklist is about: catching ambiguity,
reducing back-and-forth, and being a good teammate.

Here’s the rule I follow: If I can’t clearly explain what I’m
building and why, I’m not ready to code yet.

MY STORY REFINEMENT FRAMEWORK:
SHOW UP PREPARED

Refinement sessions aren’t just about “estimating the work.”

They’re about making sure we all understand what’s being
built—and why. Over the years, I’ve noticed that the
developers who get the most out of refinements… are the
ones who don’t walk in blind.

That’s why I always block 30 to 60 minutes before a
refinement session to go through the upcoming tickets on my

23

 From Hello World to Team Lead

own. No distractions. Just me, the stories, and some water
(no, I don’t drink coffee).

Why prep matters? When you’ve already reviewed the stories
in advance:
• You ask better questions
• You spot gaps before they become blockers
• You help your team move faster

It also shows your team you care—that you’re not just there to
passively nod along, but to co-own the outcome.

MY REFINEMENT CHECKLIST

Before the meeting, I go through each ticket and jot down
notes like:
• Ticket. Jira ticket URL
• Goal. What’s the user need? Is that clearly stated?
• Scope & Assumptions. What’s in scope and what’s not?

Any risky parts? Do I need clarification from product or
design?

• Design Questions. Are all states clear (hover, error,
loading)? What happens on mobile?

• Dependencies. Does this ticket rely on backend work? Is
the API even ready?

• Estimation. What’s a realistic range? I usually write: 4h, 8h
max (with caveats)

What I do when a story is vague or messy? If a ticket is
unclear, too technical without context, or missing design:
• I don’t just flag it during the session

24

 From Hello World to Team Lead

• I write down my questions and ping the right person
ahead of time

• I suggest reframing the ticket (e.g. splitting, adding
acceptance criteria)

You don’t need to solve everything solo, but you do need to
drive clarity.

BONUS: WORKING WITH DESIGN &
PRODUCT

Good refinement doesn’t just happen in dev-land. I regularly
loop in:

• Designers: to walk through specific screens or edge
states

• Product Owners: to confirm business rules or explain
context

• Testers: to check that we’re building something
testable and traceable

Refinement is a team sport. Show up ready to play.

FRAMEWORK FOR GROWTH

At some point in your career, your growth won’t come from
tutorials or coding challenges anymore. It’ll come from
reflection. From looking back at what you’ve built, how you’ve
contributed, where you’ve stepped up, and what you’ve
learned along the way.

25

 From Hello World to Team Lead

That’s why I started building my own growth framework. Not
to impress anyone—but to stay honest with myself.

And it works.

Every year, I sit down and I reflect: Where did I show impact?
What do I want to improve next?

I split this into three layers: Role Expectations, Impact, and
Achievements. Simple, but powerful.

1. ROLE EXPECTATIONS

Start with your current level (junior, medior, senior, lead).
Then write out what’s expected of you—not just the tasks, but
the mindset.

Here’s a quick medior-level example:
• Can work independently on most tasks
• Acts as a mentor for juniors
• Spots opportunities to improve the codebase or

process
• Suggests direction for the frontend
• Conducts small-scale research and gives technical

advice
• Can structure and break down complex tickets
• Writes clear, maintainable code
• Reviews and improves the work of others

Your version may look different. The goal is clarity: what does
“doing well” look like for me right now?

26

 From Hello World to Team Lead

2. IMPACT

Ask yourself:
• What impact have I made on my team?
• Where did I improve the process, product, or

performance?
• What feedback did I get (good or bad)?
• Where did I show initiative?

This can be high-level, like “led frontend refinements” or
“created onboarding docs for new team members.” Or it can
be subtle, like “started asking more questions in sprint
reviews and helped catch two issues before go-live.”

Write down both your wins and your growth areas. Don’t
filter. Growth starts with awareness.

3. MONTHLY ACHIEVEMENTS

Every month, I write down key things I achieved, learned, or
contributed to. Even the small stuff counts. Especially the
small stuff.

Here’s a real example from my logs:

June 2024

• Wishlist sync feature built with a reusable architecture
• Introduced a11y checks to the story-writing process
• Contributed to Q2 planning by reshuffling priorities

with the BA team

27

 From Hello World to Team Lead

• Presented accessibility improvements during frontend
temple

• First customer-facing demo given to global
stakeholders

Pro tip: Don’t wait until the end of the month. Keep a running
list.

Write things down as they happen, even just a line in a notes
app or Notion doc. You’ll be surprised what stacks up after a
few weeks! One moment you’re just logging a small fix or
presentation... and suddenly, you realize you’ve shipped five
features, mentored a teammate, and organized a workshop.
It’s easy to forget how far you’ve come unless you keep track.
And when it’s time for a review, promotion, or portfolio
update—you’ll have everything ready to go.

MISSED OPPORTUNITIES

Just as important: note what you could’ve done better.
What feedback did you ignore? What initiative didn’t you
take? What fear held you back?

My 2024 log includes things like:
• “I should’ve asked to be considered for a lead role

earlier.”
• “Need to speak up more during performance-related

tickets.”
• “Let a11y slip in a few PRs—need to double down

again.”

28

 From Hello World to Team Lead

This isn’t about being hard on yourself. It’s about growing
with intention.

TRY THIS: BUILD YOUR OWN GROWTH
TRACKER

Start today with this template:

You can do this in Notion, a journal—whatever works. The key
is: make it yours. Make it a habit.

Why This Works

• You don’t forget what you did
• You make your value visible (to yourself and others)

Section Example

Level Medior Developer

Expectations
Independent delivery,

mentor juniors, initiate
improvements

Impact Areas Frontend processes, a11y,
onboarding

Monthly Achievements Write down 3–5 per
month

Reflection Notes Wins + What to do
differently next time

29

 From Hello World to Team Lead

• You learn faster because you stop repeating old
mistakes

• You’re never stuck in a review going “uhhh… I don’t
know what I did last quarter”

⠀
Your career is made of hundreds of micro-moments.
If you don’t write them down, you’ll forget how far you’ve
come. This is how you stay grounded, confident, and
intentional. This is how you grow.

TOOLS I ACTUALLY USE

This chapter has mostly focused on mindset and systems, but
let’s get a little more practical. Over the years, I’ve tried
dozens of tools, productivity hacks, to-do apps, and
workflows. Most of them didn’t stick. But a few became daily
drivers.

These aren’t just shiny tools I downloaded once. These are
tools I’ve actually used for years, refined over time, and
integrated into how I think and work. Some are technical.
Some are organizational. All of them serve one purpose: to
reduce friction and help me stay intentional.

Thinking Tools

Bear
This is my second brain. I use it for literally everything:
• My code commandments
• Project notes
• Template library

30

 From Hello World to Team Lead

• Achievements list
• Reflection notes after projects
• Meeting prep

It’s fast, clean, markdown-based, and works offline. I’ve tried
Notion, but Bear feels lighter and more flexible for personal
workflows.

Things
My weekly planning and accountability hub. Each week, I list:
• Must-do’s
• Nice-to-haves
• “Don’t forgets” (small tasks that sneak up on you)

Every Friday I review what got done—and what didn’t. Things
helps me build a rhythm without feeling like a micromanager
to myself. At the start of each week, I open Things and ask:
“What’s actually important this week?”

Pomodoro Method (25/5 and 50/10)

I don’t always need it, but when I do it works wonders.

• 25/5 when I need short bursts of focus, e.g. ticket
analysis or creative thinking

• 50/10 when I’m deep in the code and want to stay
there

It’s not about the timer—it’s about protecting your focus.
Especially in open-plan offices or busy teams.

31

 From Hello World to Team Lead

Mental Frameworks (Structuring How I Think)

Tools are more than apps. These frameworks changed how I
work:
• GRIP (Rick Pastoor): Practical system for planning

your week, managing meetings, and keeping your
inbox (mostly) sane

• Deep Work (Cal Newport): A must-read for anyone
who writes code or solves complex problems for a
living. Less noise = more quality

• The Five Whys: My go-to method for debugging and
understanding root causes

• Weekly Reviews: Every Friday, I look back: what
worked, what didn’t, and what I want to try next

32

 From Hello World to Team Lead

THE WEEKLY REVIEW: RESET,
REFLECT, REFOCUS

I’ll be honest: I haven’t done this every week. There were
periods where I completely dropped the habit. But every time
I return to it, I realize just how powerful it is.

SMALL STEPS EACH DAY—1% BETTER

The weekly review is my personal reset button. It gives me
space to reflect, reconnect with my goals, and plan the week
ahead with more intention.

I don’t just use it to check off tasks. I use it to ask:
• What gave me energy this week?
• What drained me?
• What did I actually learn?
• What do I want to focus on next?

It’s also where I evaluate open projects, clean up my digital
desk (yes, that downloads folder), and curate what I want to
read, watch or explore next in frontend. I block time for
learning. I ask what would make the week great—not just
productive.

Here’s what a typical weekly review looks like for me:

33

 From Hello World to Team Lead

Weekly Review Checklist

1. Reflect on last week: what worked, what didn’t? What gave
you energy? What drained you?

2. Clean up desktop & downloads
3. Review calendar & meeting notes. Any follow-up actions to

take?
4. Process inboxes & task lists
5. Check open projects. Are tasks still relevant? Is there a

next action defined?
6. Revisit goals. Any progress? What’s the next step?
7. Plan your week. Choose 2–3 key priorities. Block time for

deep work, learning, and rest

Weekly Journal Prompts

• What would make this a great week?
• How will I work on my growth this week?
• What article or video will help me stay current?
• What will I do differently this week?
• Which goals deserve extra focus right now?

⠀
Do I follow this checklist perfectly every time? Absolutely not.
But even a 15-minute version of this ritual gives me clarity and
confidence going into a new week.

Pro tip: Don’t wait until Sunday night. Find a moment that
works for you. For me, Friday afternoon is perfect: I close the
loop on the week, clean my mental workspace, and actually
look forward to Monday.

34

 From Hello World to Team Lead

Give it a try. It’s one of the highest ROI habits I’ve built — and
it costs you nothing but 30 quiet minutes and a little honesty
with yourself.

The Weekly Review: A Productivity Ritual to Get More Done

INTEGRATING TEMPLATES INTO YOUR
DAY

Let me be real with you: I don’t use all these templates every
single day. I’m not a robot. Sometimes I just want to fix a bug,
write some code, and skip the checklist. And that’s okay.

Templates are here to help you, not to control you. They’re
tools, not rules. You’re allowed to break them. The point is
not to become a productivity machine, but to work with more
clarity, confidence, and intention when it matters.

That being said, here’s how I do use them in practice:
• Start of the day: I glance at my Code Commandments

before I open my editor. It’s a quick reminder of what I
value: readable code, micro commits, asking the five
whys.

• Before a ticket: I run through my Ticket Checklist to
make sure I understand the scope. Not always in full
detail, but even scanning the headings helps me spot
missing context.

• Before a refinement: I block 30–60 minutes to go
over the stories. I prep questions, assumptions, edge
cases. It makes the meeting 10x more valuable.

35

https://todoist.com/productivity-methods/weekly-review

 From Hello World to Team Lead

• During a PR: I open my Review Template. Especially if
I’m tired or busy, it helps me zoom in and out: structure
first, then details, then UX, then accessibility.

• End of the week: I don’t always do a full weekly
review, but when I do, it feels like clearing mental RAM.
I reflect, clean up, and plan with a fresh mind.

What I’ve learned is this: having a process doesn’t mean you
follow it blindly. It means you have a foundation. Something
to return to when things get chaotic. Something to build on
when you’re ready to grow.

If you want to create your own templates:
• Start with what already works for you
• Write it down, try it out, and update it regularly
• Don’t overthink the format, just make it usable
• Ask teammates what they use, and steal the best

ideas

And most of all: don’t let it become a cage. Your process
should evolve with you. Skip the checklist when you’re in the
zone. Come back to it when you feel lost. That’s how you
make systems that serve you, not the other way around.

36

 From Hello World to Team Lead

KEY TAKEAWAYS

• Having a system doesn’t kill creativity, it supports it.
Templates help you focus on what matters, reduce
mental load, and stay intentional.

• A checklist or template is a guide, not a rulebook. Use
them when they help. Ignore them when they don’t.
Make your process work for you.

• From achievements lists to weekly reviews, looking
back helps you move forward. Keep track of what
works, what doesn’t, and where you want to go.

• Whether you’re writing a commit, reviewing a PR, or
refining a story: clarity, empathy and curiosity go a long
way.

• Great developers don’t just write great code. They
have reliable workflows, clear priorities, and systems
that help them deliver.

NEXT STEPS/REFLECTION

Try one of these actions this week:
• Write your own Code Commandments. What values

do you want to bring to your work?
• Use the Ticket Checklist before starting your next

story (even if it’s just a quick scan).
• Create a Review Template based on how you give

feedback. What do you wish someone had told you?
• Start a weekly Achievement Log. What did you ship,

solve, or learn?
• Run a short Weekly Review and plan your next sprint

of personal growth.

37

 From Hello World to Team Lead

In the next chapter, we’ll zoom out. You’ll learn how to take
ownership, step up in your team, and grow from junior to
senior (and beyond). Not just by writing code, but by showing
up with the right mindset, habits and momentum.

Because growth doesn’t happen by accident.

It happens when you build it into your way of working.

Let’s go!

38

 From Hello World to Team Lead

WANT MY FULL
WORKFLOW?
This chapter is a sneak peek into how I bring structure and
clarity to daily technical work. In my eBook From Hello World
to Team Lead, I go deeper into:
• My full set of templates for reviews, refinement, and

reflection
• Checklists for performance reviews and growth

tracking
• Small developer habits that drive big impact

Ready to level up your workflow? You’ve got two options:

1. Grab the eBook – with all templates included as a bonus
2. Book a free intro call – and explore how I can help you

build a system that fits your style.

👉 From Hello World to Team Lead
👉 Book a free call

Let’s build the career you want.

39

http://www.fromhelloworldtoteamlead.com
https://calendly.com/tim-lorent/free-30-minute-growth-call-for-developers

 From Hello World to Team Lead

ABOUT THE AUTHOR

Tim Lorent. I’m a frontend developer, mentor, and coach.
Over the past 6+ years I’ve gone from bootcamp student to
lead developer. Now I help other developers grow with clarity,
intention, and practical tools, through coaching, content, and
community. You can find me here:

→ https://www.fromhelloworldtoteamlead.com/
→ Tim Lorent - LinkedIn

40

https://www.fromhelloworldtoteamlead.com/
https://www.linkedin.com/in/timlorent/

	Prologue (nerd from the start)
	4. Templates & Processes I Use Every Day
	Want My Full Workflow?
	About the author

